對不同沉積時間相互對比,180s的變化值比較小听系,且看起來和其他時間有差異贝奇,這可能是由于沉積薄膜厚度引起。時間增加到360s以后靠胜,的變化趨勢基本一致掉瞳,只是360s比其他時間的小,且隨著波長的增加其差別也變大浪漠。
展示全部
橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(二十七)- 介電常數(shù)的演變
1陕习、短波范圍(300-500 nm)
圖4-11是經(jīng)過擬合得到的在短波段的n、k及和
郑藏。從圖中可以看到不同沉積時間下得到的曲線隨波長的變化大致趨勢一致衡查,但在細(xì)節(jié)方面及數(shù)值上會有變化且和0s有較差別。n必盖、k值的變化前面有敘述拌牲,這里更加明顯的看到了360s時得到的各個值和其他時間的差別俱饿,說明該時間下沉積得到的薄膜比較特殊,如前所述有待進(jìn)一步驗(yàn)證塌忽。從圖4-11(c)圖來看
整體上有無沉積對比較明顯拍埠,0s時從正值一致減小到負(fù)值,這同樣反映的是金屬Au的特性土居。其余時間180s的zui大枣购,360s的zui小且在300nm處的值小于0,其它時間值比較接近擦耀。對比0s在320nm附近出現(xiàn)新的波包棉圈。從圖4-11(d)圖來看
在0s時數(shù)值都比有沉積的大,且在400-500nm段變化趨勢不同眷蜓,0s為增加趨勢其他時間為減小趨勢分瘾。0s時在370nm附近出現(xiàn)波包,其他沉積時間在310nm和400nm附近出現(xiàn)波包吁系。認(rèn)為310nm附近的波包是新出現(xiàn)的德召,而400nm附近的波包源于0s時的370nm處的波包只是它發(fā)生了紅移。對不同沉積時間相互對比汽纤,180s的變化值比較小上岗,且看起來和其他時間有差異,這可能是由于沉積薄膜厚度引起蕴坪。時間增加到360s以后肴掷,
的變化趨勢基本一致,只是360s比其他時間的小辞嗡,且隨著波長的增加其差別也變大捆等。
圖4-11擬合得到的不同沉積時間薄膜的300-500nm波段的(a)n滞造、(b)k及介電常數(shù)(c)實(shí)部和(d)虛部
2续室、長波范圍(500-800nm)
圖4-12是模擬得到的各個沉積時間的介電常數(shù)實(shí)部和虛部相對于1s的變化Δ
和Δ
以及相對于180s的變化率。圖4-12(a)
在300-600nm波段Δ
為
谒养,600-800nm波段Δ
為正值挺狰,整體的變化趨勢
。從圖4-12(b)來看Δ
除了360s买窟,其余的在470nm-600nm附近是負(fù)值丰泊,其余是正值。360s在300nm-420nm波段為正值始绍,其余波段負(fù)值
4-12(c)顯示Δ
/
的變化規(guī)律和Δ
的比較相似瞳购,但是放大了600-800nm波段的變化。從4-12(d)來看Δ
/
的變化規(guī)律和Δ
相似亏推,但是同樣在600-800nm波段其變比Δ
的要大学赛。
Δ年堆、Δ
在圖中出現(xiàn)的躍遷可能是沉積基底表面的干涉現(xiàn)象
的
要進(jìn)
驗(yàn)
另外Δ
/
和Δ
/
圖線的長波段的雜亂同樣表明在長波段(500-800nm)該測試系統(tǒng)對薄膜的表征不理想,后續(xù)研究可盡量在小于500nm的波段進(jìn)行盏浇。
圖4-12相對于180s沉積的變化(a)变丧;(b)
;(c)
/
;(d)
/
了解更多橢偏儀詳情绢掰,請?jiān)L問上海昊量光電的官方網(wǎng)頁:
http://www.wjjzl.com/three-level-56.html
更多詳情請聯(lián)系昊量光電/歡迎直接聯(lián)系昊量光電
關(guān)于昊量光電:
上海昊量光電設(shè)備有限公司是光電產(chǎn)品專業(yè)代理商痒蓬,產(chǎn)品包括各類激光器、光電調(diào)制器滴劲、光學(xué)測量設(shè)備攻晒、光學(xué)元件等,涉及應(yīng)用涵蓋了材料加工班挖、光通訊炎辨、生物醫(yī)療、科學(xué)研究聪姿、國防碴萧、量子光學(xué)、生物顯微末购、物聯(lián)傳感破喻、激光制造等;可為客戶提供完整的設(shè)備安裝盟榴,培訓(xùn)曹质,硬件開發(fā),軟件開發(fā)擎场,系統(tǒng)集成等服務(wù)羽德。
您可以通過我們昊量光電的官方網(wǎng)站www.wjjzl.com了解更多的產(chǎn)品信息,或直接來電咨詢4006-888-532迅办。
參考文獻(xiàn)
[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.
[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.
[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.
[4] CHEN S, KüHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.
[5] 陳籃宅静,周巖. 膜厚度測量的橢偏儀法原理分析[J]. 大學(xué)物理實(shí)驗(yàn), 1999, 12(3): 10-13.
[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.
[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.
[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.
[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.
[10] 焦楊景.橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建.云南大學(xué)說是論文,2022.
[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.
[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.
[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.
[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.
[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.
[16] VIEGAS D, FERNANDES E, QUEIRóS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.
[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.
[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.
[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.
[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.
[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..
[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).
[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.
[24] 李廣立. 氧化亞銅薄膜的制備及其光電性能研究[D]. 西南交通大學(xué), 2016.
[25] 董金礦. 氧化亞銅薄膜的制備及其光催化性能的研究[D]. 安徽建筑大學(xué), 2014.
[26] 張楨. 氧化亞銅薄膜的電化學(xué)制備及其光催化和光電性能的研究[D]. 上海交通大學(xué)材料科 學(xué)與工程學(xué)院, 2013.
[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.
[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.
[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.
[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.
[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.
[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.
[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.
[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.
[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.
[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.
[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.
[38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.
[39] KAZIMIERCZUK T, FR?HLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.
[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.
[41] 舒云. Cu2O薄膜的電化學(xué)制備及其光電化學(xué)性能的研究[D]. 云南大學(xué)物理與天文學(xué)院,2019.
展示全部