圓形微腔設(shè)計(jì)太大使得溶液浪費(fèi)且測(cè)試過(guò)程中基底的更換梁肿、池體的密封困難。然后完成圓環(huán)型微元腔體的設(shè)計(jì)及制作觅彰,其足夠小的腔體減小了溶液對(duì)橢偏測(cè)試帶來(lái)的影響吩蔑。但是容納的溶液會(huì)帶來(lái)沉積離子不夠的問(wèn)題且經(jīng)過(guò)實(shí)驗(yàn)發(fā)現(xiàn)對(duì)電極ITO上會(huì)出現(xiàn)氣泡,影響橢偏測(cè)試填抬,所以在此基礎(chǔ)上設(shè)計(jì)制作完成了長(zhǎng)方形微流腔體烛芬。
展示全部
橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(二十)- 長(zhǎng)方形流動(dòng)微腔
3.3.2長(zhǎng)方形流動(dòng)微腔
為了解決溶液微圓形腔體溶液注入困難、溶液少及反應(yīng)產(chǎn)生氣泡的問(wèn)題飒责,進(jìn)一步對(duì)腔體進(jìn)行改進(jìn)赘娄,得到微流腔體。圖3-18是微流腔體制作過(guò)程示意圖宏蛉,首先準(zhǔn)備好ITO遣臼、EVA膠膜、特氟龍細(xì)管拾并、Au/Si揍堰,把EVA膠膜切成內(nèi)為25px×62.5px,外為37.5px×75px的長(zhǎng)方形嗅义,然后從上到下依次把ITO屏歹、EVA膠膜/特氟龍細(xì)管、Au/Si疊好置于加熱平臺(tái)之碗,在150℃下加熱蝙眶,使得EVA軟化粘合池體,zui后冷卻得到成品褪那。
該池體工作電極即為Au/Si基底幽纷,上端的ITO即為對(duì)電極式塌,溶液的進(jìn)出由兩邊的特氟龍細(xì)管實(shí)現(xiàn),通常制作完成后的微腔厚度和特氟龍細(xì)管一致友浸,約為1mm峰尝。該微腔具有液層薄、溶化充足且流動(dòng)可以消除ITO上產(chǎn)生的氣泡等優(yōu)點(diǎn)尾菇。
圖31-18流動(dòng)型微腔示意圖
用該池體對(duì)不同濃度醋酸鉛溶液進(jìn)行測(cè)試境析,得到的結(jié)果如圖3-19所示∨晌埽可以看到有無(wú)溶液加入劳淆,測(cè)試得到的橢偏參數(shù)峰位及數(shù)值上都存在差別。但是在加不同濃度的溶液(去離子水默赂、1M醋酸鈉沛鸵、1M的醋酸鈉和5/10/15/20mM的醋酸鉛)后得到的橢偏參數(shù)數(shù)值和趨勢(shì)都一致。這和前面所述的半圓弧型電解池在不同濃度的醋酸鉛溶液中橢偏測(cè)試結(jié)果一致缆八,同樣說(shuō)明在醋酸鉛溶液中曲掰,其濃度橢偏測(cè)試參數(shù)的影響可忽略不計(jì)。
圖3-19不同條件下EVA腔體橢偏測(cè)試結(jié)果(a)Psi奈辰;(b)Delta
如圖3-20所示栏妖,是用該池體進(jìn)行沉積薄膜的結(jié)果。電解液為0.02MCu(CH3COO)2奖恰,0.1MCH3COONa吊趾,Au/Si為工作電極,ITO為對(duì)電極瑟啃,-0.4mA恒壓沉積论泛。對(duì)比沉積前后腔體圖可知,用該池體可以進(jìn)行沉積。與前圓環(huán)電極對(duì)比可以看到,ITO上不再有氣泡存在刚照,因?yàn)楫a(chǎn)生的氣泡都被流動(dòng)的溶液帶走了。因溶液可以流動(dòng)剖笙,故可克服圓環(huán)電極溶液少的缺點(diǎn)。所以后續(xù)沉積薄膜實(shí)驗(yàn)的橢偏儀監(jiān)測(cè)選用該流動(dòng)池體進(jìn)行。
圖3-20流動(dòng)型微腔(a)沉積前(b)沉積后實(shí)物圖
3.4小結(jié)
本文主要介紹了研究中實(shí)驗(yàn)裝置的設(shè)計(jì)及測(cè)試的過(guò)程,主要包含半圓弧型器件微元腔體器件载绿。首先設(shè)計(jì)完成半圓弧器件,實(shí)現(xiàn)了把沉積過(guò)程和橢偏儀測(cè)試相結(jié)合油航,觀察窗口選用石英玻璃,理論上zui大限度減小了光的損耗怀浆。但是它的池體設(shè)計(jì)太大使得溶液浪費(fèi)且測(cè)試過(guò)程中基底的更換谊囚、池體的密封困難怕享。然后完成圓環(huán)型微元腔體的設(shè)計(jì)及制作,其足夠小的腔體減小了溶液對(duì)橢偏測(cè)試帶來(lái)的影響镰踏。但是容納的溶液會(huì)帶來(lái)沉積離子不夠的問(wèn)題且經(jīng)過(guò)實(shí)驗(yàn)發(fā)現(xiàn)對(duì)電極ITO上會(huì)出現(xiàn)氣泡函筋,影響橢偏測(cè)試,所以在此基礎(chǔ)上設(shè)計(jì)制作完成了長(zhǎng)方形微流腔體奠伪。該設(shè)計(jì)成功解決了氣泡和溶液少所帶來(lái)的問(wèn)題跌帐,故而后續(xù)實(shí)驗(yàn)將采用長(zhǎng)方形微流腔體。
了解更多橢偏儀詳情绊率,請(qǐng)?jiān)L問(wèn)上海昊量光電的官方網(wǎng)頁(yè):
http://www.wjjzl.com/three-level-56.html
更多詳情請(qǐng)聯(lián)系昊量光電/歡迎直接聯(lián)系昊量光電
關(guān)于昊量光電:
上海昊量光電設(shè)備有限公司是光電產(chǎn)品專(zhuān)業(yè)代理商谨敛,產(chǎn)品包括各類(lèi)激光器、光電調(diào)制器滤否、光學(xué)測(cè)量設(shè)備脸狸、光學(xué)元件等,涉及應(yīng)用涵蓋了材料加工藐俺、光通訊炊甲、生物醫(yī)療、科學(xué)研究欲芹、國(guó)防卿啡、量子光學(xué)、生物顯微菱父、物聯(lián)傳感颈娜、激光制造等;可為客戶(hù)提供完整的設(shè)備安裝滞伟,培訓(xùn)揭鳞,硬件開(kāi)發(fā),軟件開(kāi)發(fā)梆奈,系統(tǒng)集成等服務(wù)野崇。
您可以通過(guò)我們昊量光電的官方網(wǎng)站www.wjjzl.com了解更多的產(chǎn)品信息,或直接來(lái)電咨詢(xún)4006-888-532亩钟。
相關(guān)文獻(xiàn):
[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.
[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.
[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.
[4] CHEN S, KüHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.
[5] 陳籃乓梨,周巖. 膜厚度測(cè)量的橢偏儀法原理分析[J]. 大學(xué)物理實(shí)驗(yàn), 1999, 12(3): 10-13.
[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.
[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.
[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.
[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.
[10] 焦楊景.橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建.云南大學(xué)說(shuō)是論文,2022.
[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.
[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.
[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.
[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.
[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.
[16] VIEGAS D, FERNANDES E, QUEIRóS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.
[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.
[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.
[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.
[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.
[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..
[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).
[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.
[24] 李廣立. 氧化亞銅薄膜的制備及其光電性能研究[D]. 西南交通大學(xué), 2016.
[25] 董金礦. 氧化亞銅薄膜的制備及其光催化性能的研究[D]. 安徽建筑大學(xué), 2014.
[26] 張楨. 氧化亞銅薄膜的電化學(xué)制備及其光催化和光電性能的研究[D]. 上海交通大學(xué)材料科 學(xué)與工程學(xué)院, 2013.
[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.
[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.
[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.
[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.
[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.
[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.
[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.
[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.
[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.
[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.
[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.
[38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.
[39] KAZIMIERCZUK T, FR?HLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.
[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.
[41] 舒云. Cu2O薄膜的電化學(xué)制備及其光電化學(xué)性能的研究[D]. 云南大學(xué)物理與天文學(xué)院,2019.
展示全部