首頁  技術(shù)文章  橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(二十三)- 全波段沉積過程的準(zhǔn)在位測(cè)試分析-不同沉積時(shí)間所對(duì)應(yīng)的

橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(二十三)- 全波段沉積過程的準(zhǔn)在位測(cè)試分析-不同沉積時(shí)間所對(duì)應(yīng)的

發(fā)布時(shí)間:2024-05-06 15:13:43 瀏覽量:1397 作者:Alex

摘要

依據(jù)實(shí)驗(yàn)組前期對(duì)CU2O薄膜沉積的實(shí)驗(yàn),選擇-0.4mA進(jìn)行兩電極的恒流沉積鸠姨,并用橢偏儀進(jìn)行在位監(jiān)測(cè)铜秆,每沉積180s后進(jìn)行300nm到800nm的橢偏測(cè)試。即在沉積180s讶迁、360s连茧、540s、720s巍糯、900s啸驯、1080s后分別進(jìn)行了橢偏儀全譜測(cè)試,測(cè)試角度為70°祟峦。

正文


橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(二十三)- 全波段沉積過程的準(zhǔn)在位測(cè)試分析-不同沉積時(shí)間所對(duì)應(yīng)的橢偏參數(shù)


1罚斗、不同沉積時(shí)間所對(duì)應(yīng)的橢偏參數(shù)Psi、Delta搀愧、R


圖4-5是得到的不同沉積時(shí)間橢偏參數(shù)Psi和Delta及反射率R隨著波長的變化,對(duì)比0s的圖線疆偿,Psi咱筛、Delta、α及R值在整體上都是減小的杆故,整體趨勢(shì)較相似迅箩,但存在峰位的增加及峰位的移動(dòng)。從圖4-5(a处铛、e)來看饲趋,與0s相比,不同沉積時(shí)間Psi值隨波長的變化趨勢(shì)的大致相同撤蟆。不同沉積時(shí)間的Psi值在300nm到500nm波段變化較小奕塑,相較于0s時(shí)在330nm處出現(xiàn)峰位。沉積時(shí)間為180s時(shí)家肯,波長在500-800nm的長波范圍龄砰,其值從襯底的44°減小到30°左右。在沉積時(shí)間增加到540s讨衣、900s换棚、1080s時(shí),在約540nm處出現(xiàn)一個(gè)較明顯的波包反镇。不同時(shí)間測(cè)試得到的Psi值有變化固蚤,這也意味測(cè)試的基底表面發(fā)生了變化。圖4-5(b歹茶、f)中顯示橢偏參數(shù)Delta值隨著時(shí)間的變化與橢偏參數(shù)Psi的趨勢(shì)一致夕玩。在長波500-800nm的范圍內(nèi)得到的不同時(shí)間的Delta值從Au襯底所對(duì)應(yīng)120°減小到70°附近你弦。當(dāng)沉積時(shí)間增加到540s、900s风秤、1080s時(shí)鳖目,約在540nm處出現(xiàn)較明顯的峰位。Delta值同樣顯示出測(cè)試基底表面發(fā)生了改變缤弦。圖4-5(c领迈、g)是吸收系數(shù)α隨不同沉積時(shí)將隨波長的變化,和0s相比碍沐,整體上變化趨勢(shì)相似狸捅,但是在數(shù)值及吸收波包上存在變化。在300-500nm波段不同沉積時(shí)間變化趨勢(shì)及數(shù)值比較接近累提,且都在大約330nm處出現(xiàn)新的吸收波包尘喝。在500-800nm波段,540s斋陪、900s朽褪、1080s都在500-550nm波段出現(xiàn)新的波包且隨著時(shí)間的增加存在紅移現(xiàn)象。數(shù)值的變化及新的吸收波包的出現(xiàn)无虚,可能是由于沉積的CU2O帶來的缔赠,有待進(jìn)一步驗(yàn)證。圖4-5(d友题、h)中顯示反射系數(shù)R值隨著時(shí)間的變化嗤堰,其變化規(guī)律和吸收率相似。當(dāng)沉積時(shí)間為180s的時(shí)候度宦,R的值大約從Au基底的1附近降為0.3左右踢匣,在波長為300-500nm之間存在兩個(gè)波包(330nm,400nm),在波長為500-800nm之間存在兩個(gè)波包(540nm戈抄,630nm)拇泣。當(dāng)沉積時(shí)間為360s時(shí)與180s的曲線很接近邻眷,但是在長波500-800nm減為1個(gè)較明顯的波包,大約在600nm附近。當(dāng)沉積時(shí)間增加到540s時(shí)臭杰,在500nm-800nm范圍出現(xiàn)兩個(gè)比180s更大的波包(510nm茸塞,660nm)派近。到720s時(shí)腾节,R值隨波長的變化與360s一致。到900s和1080s時(shí)崭捍,R值隨波長的變化與540s一致尸折,但500nm到800nm的兩個(gè)波包峰位有所變化∫笊撸總體上看实夹,在短波段R值隨著沉積時(shí)間的變化十分微小且曲線比較光滑橄浓,但是在長波段會(huì)隨著沉積時(shí)間的不同上下波動(dòng)且曲線本身也存在波動(dòng)。說明長波對(duì)基底表面變化更敏感亮航,對(duì)測(cè)試信息影響更大荸实。對(duì)比文獻(xiàn)中Au的反射率知道其在長波段的反射率接近1與0s時(shí)的R相似,故認(rèn)為在沒有沉積之前整個(gè)池體橢偏數(shù)據(jù)主要反應(yīng)的是Au基底的信息缴淋。與沉積0s相比准给,不同沉積時(shí)間的反射率R減小,說明Au襯底的信息減少重抖,這是由于CU2O的沉積導(dǎo)致露氮。


圖4-5不同沉積時(shí)間(180s,360s,720s,1080s)的橢偏數(shù)據(jù):

(a,e)Psi钟沛;

(b畔规,f)Delta;

(c恨统,g)α叁扫;

(d,h)R


了解更多橢偏儀詳情畜埋,請(qǐng)?jiān)L問上海昊量光電的官方網(wǎng)頁:

http://www.wjjzl.com/three-level-56.html


更多詳情請(qǐng)聯(lián)系昊量光電/歡迎直接聯(lián)系昊量光電

關(guān)于昊量光電:

上海昊量光電設(shè)備有限公司是光電產(chǎn)品專業(yè)代理商莫绣,產(chǎn)品包括各類激光器、光電調(diào)制器由捎、光學(xué)測(cè)量設(shè)備兔综、光學(xué)元件等饿凛,涉及應(yīng)用涵蓋了材料加工狞玛、光通訊、生物醫(yī)療涧窒、科學(xué)研究心肪、國防、量子光學(xué)纠吴、生物顯微硬鞍、物聯(lián)傳感、激光制造等戴已;可為客戶提供完整的設(shè)備安裝固该,培訓(xùn),硬件開發(fā)糖儡,軟件開發(fā)伐坏,系統(tǒng)集成等服務(wù)。

您可以通過我們昊量光電的官方網(wǎng)站www.wjjzl.com了解更多的產(chǎn)品信息握联,或直接來電咨詢4006-888-532桦沉。


參考文獻(xiàn)

[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.

[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.

[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.

[4] CHEN S, KüHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.

[5] 陳籃每瞒,周巖. 膜厚度測(cè)量的橢偏儀法原理分析[J]. 大學(xué)物理實(shí)驗(yàn), 1999, 12(3): 10-13.

[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.

[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.

[10] 焦楊.橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建.云南大學(xué)說是論文,2022.

[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.

[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.

[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.

[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.

[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.

[16] VIEGAS D, FERNANDES E, QUEIRóS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.

[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.

[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.

[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.

[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.

[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry[J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..

[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).

[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.

[24] 李廣立. 氧化亞銅薄膜的制備及其光電性能研究[D]. 西南交通大學(xué), 2016.

[25] 董金礦. 氧化亞銅薄膜的制備及其光催化性能的研究[D]. 安徽建筑大學(xué), 2014.

[26] 張楨. 氧化亞銅薄膜的電化學(xué)制備及其光催化和光電性能的研究[D]. 上海交通大學(xué)材料科 學(xué)與工程學(xué)院, 2013.

[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.

[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.

[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.

[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.

[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.

[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.

[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.

[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.

[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.

[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.

[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.

 [38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.

[39] KAZIMIERCZUK T, FR?HLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.

[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.

[41] 舒云. Cu2O薄膜的電化學(xué)制備及其光電化學(xué)性能的研究[D]. 云南大學(xué)物理與天文學(xué)院,2019.

閱讀延伸

展示全部  up

国产福利姬视频在线观看,国产原创激情在线观看网站,亚洲欧美日韩激色国产精品,日韩精品亚洲国产