橢偏譜是一種無(wú)損測(cè)量技術(shù)可應(yīng)用于薄膜光學(xué)常數(shù)及厚度等的測(cè)量。橢偏譜目前已經(jīng)被應(yīng)用于真空薄膜的在位監(jiān)控扳抽,比如磁控濺射篡帕,原子層沉積(ALD)和分子束外延(MBE)等。通過(guò)橢偏儀的在位監(jiān)測(cè)及建模擬合可以實(shí)時(shí)解構(gòu)出未知成分的光學(xué)常數(shù)贸呢、厚度以及生長(zhǎng)模式镰烧。但是利用橢偏儀在位監(jiān)測(cè)電化學(xué)沉積極具挑戰(zhàn)性,面臨著溶液界面贮尉、實(shí)驗(yàn)裝置和擬合模型的影響拌滋。
展示全部
橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(一)-基本原理
利用橢偏儀可以精確測(cè)量薄膜的厚度和光學(xué)常數(shù),其測(cè)量原理基于不同偏振光(S猜谚,P)與材料的作用败砂。如圖1-1所示的單層薄膜模型中,所測(cè)的薄膜在襯底上魏铅,zui上層為空氣昌犹,薄膜兩側(cè)介質(zhì)都是半無(wú)限大,且薄膜上下表面皆是理想光滑表面览芳,三種介質(zhì)皆為均勻斜姥、各向同性介質(zhì)。在實(shí)際測(cè)量過(guò)程中沧竟,單層模型的三種介質(zhì)通常指的是空氣铸敏、待測(cè)薄膜和基底。
圖1-1 光波在多層膜上的反射與透射
光波在單層膜上的反射和透射示意圖如圖1-1所示悟泵。定義入射光波矢量E在垂直于入射面上的分量為P光杈笔,在入射面上的分量為S光。
由折射定律及菲涅耳定律知糕非、
蒙具、
的關(guān)系為:
上述式子中,n1是空氣的折射率(1.00)朽肥,n2是薄膜的折射率禁筏,n3是襯底折射率,是光在界面1的入射角衡招,
篱昔、
如圖1-1所示,分別是在所測(cè)薄膜始腾、基底中的折射角旱爆。在圖1-1的模型中舀射,經(jīng)過(guò)多次反射折射后,由多光干涉的公式可得zui終反射系數(shù)為:
其中怀伦,d是膜厚脆烟,λ是真空中光的波長(zhǎng),2δ是相鄰兩束反射光的相位差房待。
振幅邢羔、相位是描述光波偏振狀態(tài)的兩個(gè)參數(shù),在橢偏儀中用Ψ桑孩、△來(lái)表示拜鹤。其取值范圍是:0≤Ψ≤π/2,0≤△<2π流椒∶舨荆總反射系數(shù)比值定義為ρ,ρ與(Ψ宣虾,△)惯裕、(Rp,Rs)關(guān)系式如下:
其中绣硝,tgΨ為反射前后P蜻势、S光兩分量的振幅衰減比,△=δp?δs為P鹉胖、S兩分量相位變化差握玛。
可以清楚地看到Ψ、△直接給出反射前和反射后光偏振狀態(tài)變化甫菠。在襯底挠铲、入射角、波長(zhǎng)等確定已知的條件下寂诱,Ψ拂苹、△是膜厚d和薄膜折射率n的函數(shù),可表示為下式:
由上式可知薄膜反射后刹衫,橢偏光偏振狀態(tài)發(fā)生改變醋寝,成為另一種橢偏光搞挣。測(cè)量過(guò)程中带迟,對(duì)起偏器方位角p進(jìn)行調(diào)節(jié),使得反射得到的橢偏光變成線性偏振光囱桨;再通過(guò)檢偏器的方位角A調(diào)節(jié)仓犬,得到消光狀態(tài)。此時(shí)舍肠,薄膜的厚度d與折射率n為起偏器方位角p和檢偏器的方位角A的函數(shù)搀继,可寫(xiě)成如下一般函數(shù)式為:
對(duì)式(1-6)的處理是在沒(méi)有具體函數(shù)的情況之下窘面,利用(1-1)~(1-2)式,列出(P叽躯,A)~(d财边,n)的數(shù)表,再根據(jù)消光狀態(tài)下得到的(P点骑,A)值酣难,找到相應(yīng)膜厚d與其折射率n。通常消光狀態(tài)有許多個(gè)黑滴,所以可以通過(guò)多次測(cè)量得到一系列(P憨募,A)值及其對(duì)應(yīng)的(d,n)袁辈,zui后多值求平均得到的結(jié)果更為準(zhǔn)確菜谣。
要從橢偏儀測(cè)量數(shù)據(jù)中得到厚度、光學(xué)常數(shù)等信息晚缩,則要對(duì)測(cè)試得到的橢偏實(shí)驗(yàn)數(shù)據(jù)進(jìn)行模擬尾膊。所以橢偏儀數(shù)據(jù)的模型建立和擬合是至關(guān)重要的一步。常見(jiàn)的橢偏儀數(shù)據(jù)分析模型有NK模型橡羞、柯西模型眯停、柯西指數(shù)模型、Sellmeier模型卿泽、Lorentz-Lorenz Oscillator模型莺债、Maxwell-Garnett有效介質(zhì)模型、Bruggeman有效介質(zhì)模型签夭、Graded模型齐邦、Drude模型、洛侖茲振子模型第租、Forouhi Bloomer模型措拇。下面介紹一下有效介質(zhì)(EMA)模型和Drude+Lorentz Oscillator模型。
EMA(有效介質(zhì))模型:有效介質(zhì)模型適用于復(fù)合材料具有多種組分的情況慎宾。其中復(fù)合的介電常數(shù)是由各個(gè)組分的介電常數(shù)線性疊加而成丐吓,且與成分的形狀有關(guān)。EMA模型的常見(jiàn)表達(dá)式:
其中是復(fù)合介質(zhì)的介電函數(shù)趟据,fi和
是某一組分的體積分?jǐn)?shù)和介電函數(shù)券犁,
是底介電函數(shù),m是各組分的數(shù)量汹碱,Y是與顆粒的形狀有的關(guān)屏蔽因子粘衬。用有效質(zhì)模型可以解構(gòu)表面的成核和生長(zhǎng),以及表面的粗糙度等。
Drude+Lorentz Oscillator模型:一般來(lái)講金屬中費(fèi)米面附近的電子視為自由電子稚新,其介電常數(shù)可以用自由電子模型進(jìn)行描述勘伺。但是對(duì)于金屬比如貴金屬Au,Ag,Cu在其高頻部分褂删,還會(huì)出現(xiàn)帶間躍遷飞醉。因此對(duì)于金屬和載流子濃度較高的半導(dǎo)體材料,其介電常數(shù)可以用Drude+Lorentz Oscillator模型模型進(jìn)行描述:
其中為高頻晶格介電常數(shù)屯阀,wp為等離子體頻率冒掌,v為阻尼頻率,Ecenter r為振子的中心能量蹲盘,Aj為j振子的振幅股毫。Aj振幅和橫向和縱向的聲子頻率有關(guān),
召衔,其中WL為橫向聲子頻率铃诬,為縱WT向聲子頻率。m為振子的數(shù)目苍凛。
了解更多詳情趣席,請(qǐng)?jiān)L問(wèn)上海昊量光電的官方網(wǎng)頁(yè):
http://www.wjjzl.com/three-level-56.html
更多詳情請(qǐng)聯(lián)系昊量光電/歡迎直接聯(lián)系昊量光電
關(guān)于昊量光電:
上海昊量光電設(shè)備有限公司是光電產(chǎn)品專(zhuān)業(yè)代理商,產(chǎn)品包括各類(lèi)激光器醇蝴、光電調(diào)制器宣肚、光學(xué)測(cè)量設(shè)備、光學(xué)元件等悠栓,涉及應(yīng)用涵蓋了材料加工霉涨、光通訊、生物醫(yī)療惭适、科學(xué)研究笙瑟、國(guó)防、量子光學(xué)癞志、生物顯微往枷、物聯(lián)傳感、激光制造等凄杯;可為客戶(hù)提供完整的設(shè)備安裝错洁,培訓(xùn),硬件開(kāi)發(fā)戒突,軟件開(kāi)發(fā)屯碴,系統(tǒng)集成等服務(wù)。
您可以通過(guò)我們昊量光電的官方網(wǎng)站www.wjjzl.com了解更多的產(chǎn)品信息妖谴,或直接來(lái)電咨詢(xún)4006-888-532窿锉。
相關(guān)文獻(xiàn):
[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.
[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.
[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.
[4] CHEN S, KüHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.
[5] 陳籃,周巖. 膜厚度測(cè)量的橢偏儀法原理分析[J]. 大學(xué)物理實(shí)驗(yàn), 1999, 12(3): 10-13.
[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.
[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.
[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.
[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.
[10] 焦楊景.橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建.云南大學(xué)說(shuō)是論文,2022.
[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.
[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.
[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.
[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.
[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.
[16] VIEGAS D, FERNANDES E, QUEIRóS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.
[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.
[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.
[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.
[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.
[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..
[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).
[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.
[24] 李廣立. 氧化亞銅薄膜的制備及其光電性能研究[D]. 西南交通大學(xué), 2016.
[25] 董金礦. 氧化亞銅薄膜的制備及其光催化性能的研究[D]. 安徽建筑大學(xué), 2014.
[26] 張楨. 氧化亞銅薄膜的電化學(xué)制備及其光催化和光電性能的研究[D]. 上海交通大學(xué)材料科 學(xué)與工程學(xué)院, 2013.
[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.
[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.
[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.
[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.
[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.
[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.
[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.
[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.
[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.
[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.
[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.
[38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.
[39] KAZIMIERCZUK T, FR?HLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.
[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.
[41] 舒云. Cu2O薄膜的電化學(xué)制備及其光電化學(xué)性能的研究[D]. 云南大學(xué)物理與天文學(xué)院膝舅,2019.
展示全部