首頁  技術(shù)文章  橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(十七)- 系統(tǒng)誤差與醋酸鉛實(shí)驗(yàn)

橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(十七)- 系統(tǒng)誤差與醋酸鉛實(shí)驗(yàn)

發(fā)布時(shí)間:2024-04-10 13:54:31 瀏覽量:1638 作者:Alex

摘要

制作完成電解池后進(jìn)行了初步的實(shí)驗(yàn),一是對(duì)該池體系統(tǒng)誤差進(jìn)行探索實(shí)驗(yàn)访敌,二是不同濃度醋酸鉛測(cè)試凉敲,后zui是Pb薄膜的沉積實(shí)驗(yàn)。

正文


橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(十七)- 系統(tǒng)誤差與醋酸鉛實(shí)驗(yàn)


3.2.6實(shí)驗(yàn)測(cè)試與分析


3.2.6.1系統(tǒng)誤差實(shí)驗(yàn)


為了進(jìn)一步分析該池體的實(shí)驗(yàn)可行性,用去離子水阻塑、1M醋酸鈉和15mM蓝撇、20mM的醋酸鉛作為溶液,Au/Si為基底陈莽,在電解池中進(jìn)行多次橢偏儀測(cè)量渤昌,測(cè)量入射角為65°,波長范圍為300nm到800nm走搁,步長為10nm。結(jié)果如圖3-8所示私植。


圖3-8(a忌栅,b)為去離子水條件下測(cè)試得到的Au基底在池體中的Psi和Delta,整體上看不同測(cè)試次數(shù)得到的圖譜隨著波長的變化趨勢(shì)一致曲稼,但是在數(shù)值上有所偏移索绪,向上或向下移動(dòng)。圖3-8(c贫悄,d)為1M醋酸鈉和15mM的醋酸鉛作為溶液測(cè)試得到的池體中Au基底的Psi和Delta瑞驱,整體上看不同測(cè)試次數(shù)得到的圖譜隨著波長的變化趨勢(shì)一致清女,且數(shù)值上基本一樣钱烟。圖3-8(e,f)為1M醋酸鈉和20mM的醋酸鉛作為溶液測(cè)試得到的池體中Au基底的Psi和Delta嫡丙,整體上看不同測(cè)試次數(shù)得到的圖譜隨著波長的變化趨勢(shì)一致,數(shù)值上和去離子水的一樣曙博,有上下移動(dòng),且在測(cè)試過程中存在與15mM醋酸鉛相同的波動(dòng)怜瞒。


從上述圖譜變化中可以看出父泳,在同種溶液中般哼,以同樣的測(cè)試條件測(cè)量惠窄,得到的不同次數(shù)的圖譜在整體趨勢(shì)上一致的同時(shí)會(huì)存在上下移動(dòng)蒸眠,且在測(cè)試過程中可能會(huì)出現(xiàn)微擾。而產(chǎn)生以上變化的原因一是測(cè)量系統(tǒng)本身帶來杆融,二是測(cè)試過程中溶液紋動(dòng)帶來楞卡。故而該池體在測(cè)試過程中出現(xiàn)的系統(tǒng)誤差在后續(xù)實(shí)驗(yàn)分析中至關(guān)重要脾歇。


圖3-8去離子水(a蒋腮,b)以及不同濃度醋酸鉛(b,c)15m和(b藕各,d)20mM橢偏參數(shù)Psi和Delta


3.2.6.2不同濃度醋酸鉛測(cè)試


薄膜沉積的在位監(jiān)測(cè)涉及到溶液和電極表面及固液兩相界面,而在電化學(xué)沉積時(shí)固液界面附近會(huì)存在溶液濃度差激况,即存在擴(kuò)散層作彤。由緒論部分溶液對(duì)光學(xué)常數(shù)影響的推導(dǎo)知乌逐,不同濃度的溶液對(duì)光的吸收等光學(xué)常數(shù)都不同宦棺,所以在具體監(jiān)測(cè)之前要進(jìn)行該池體下擴(kuò)散層的存在對(duì)測(cè)試結(jié)果影響的分析。由于擴(kuò)散層溶液濃度變化范圍是0到本體溶液濃度黔帕,為了實(shí)現(xiàn)對(duì)擴(kuò)散層存在影響的定性分析代咸,可以把擴(kuò)散層簡化為幾個(gè)不同濃度的溶液,這樣測(cè)試就變得簡單可行成黄。


實(shí)驗(yàn)還是用醋酸鈉和醋酸鉛溶液,測(cè)試入射角為70°奋岁,波長范圍300nm到800nm思瘟。首先準(zhǔn)備好去離子水以及配制好不同濃度的溶液,1M醋酸鈉以及1M醋酸鈉加5mM闻伶、10mM滨攻、15mM、20mM的醋酸鉛光绕。然后以Au/Si為基底置于池體中進(jìn)行橢偏測(cè)量。


圖3-9是不同溶液濃度下測(cè)試得到的橢偏參數(shù)Psi和Delta隨波長的變化圖畜份,從圖中可以看到整體上不同濃度溶液得到隨波長變化的整體趨勢(shì)是一樣的,但是在數(shù)值上有微小差別爆雹。


圖3-9不同濃度醋酸鉛測(cè)試結(jié)果


上述呈現(xiàn)出的橢偏圖譜隨濃度變化停蕉,不同濃度溶液隨波長的變化趨勢(shì)一致愕鼓,但是會(huì)存在數(shù)值上的波動(dòng)。對(duì)比3.2.2節(jié)所測(cè)試結(jié)果分析知慧起,該處呈現(xiàn)的圖譜隨濃度的變化小于同一濃度不同次數(shù)測(cè)試的變化菇晃,故而在該池體測(cè)試的系統(tǒng)誤差范圍內(nèi),可以不考慮溶液濃度對(duì)橢偏參數(shù)所帶來的影響蚓挤。而本實(shí)驗(yàn)擴(kuò)散層厚度中溶液濃度變化不會(huì)超過本體溶液濃度,所以在后續(xù)的橢偏在位監(jiān)測(cè)薄膜沉積的過程中就可不考慮擴(kuò)散層中溶液濃度變化給測(cè)試帶來的影響屈尼。


通過上述實(shí)驗(yàn)分析知該池體在醋酸鈉和醋酸鉛溶液中對(duì)基底進(jìn)行橢偏儀測(cè)試是可行的册着,可以用該池體對(duì)薄膜沉積進(jìn)行實(shí)驗(yàn)。


了解更多橢偏儀詳情脾歧,請(qǐng)?jiān)L問上海昊量光電的官方網(wǎng)頁:

http://www.wjjzl.com/three-level-56.html


更多詳情請(qǐng)聯(lián)系昊量光電/歡迎直接聯(lián)系昊量光電

關(guān)于昊量光電:

上海昊量光電設(shè)備有限公司是光電產(chǎn)品專業(yè)代理商甲捏,產(chǎn)品包括各類激光器、光電調(diào)制器鞭执、光學(xué)測(cè)量設(shè)備司顿、光學(xué)元件等,涉及應(yīng)用涵蓋了材料加工大溜、光通訊、生物醫(yī)療估脆、科學(xué)研究钦奋、國防、量子光學(xué)疙赠、生物顯微、物聯(lián)傳感圃阳、激光制造等厌衔;可為客戶提供完整的設(shè)備安裝,培訓(xùn)捍岳,硬件開發(fā),軟件開發(fā)锣夹,系統(tǒng)集成等服務(wù)页徐。

您可以通過我們昊量光電的官方網(wǎng)站www.wjjzl.com了解更多的產(chǎn)品信息,或直接來電咨詢4006-888-532晕城。


相關(guān)文獻(xiàn):

[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.

[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.

[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.

[4] CHEN S, KüHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.

[5] 陳籃泞坦,周巖. 膜厚度測(cè)量的橢偏儀法原理分析[J]. 大學(xué)物理實(shí)驗(yàn), 1999, 12(3): 10-13.

[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.

[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.

[10] 焦楊.橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建.云南大學(xué)說是論文,2022.

[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.

[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.

[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.

[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.

[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.

[16] VIEGAS D, FERNANDES E, QUEIRóS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.

[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.

[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.

[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.

[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.

[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..

[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).

[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.

[24] 李廣立. 氧化亞銅薄膜的制備及其光電性能研究[D]. 西南交通大學(xué), 2016.

[25] 董金礦. 氧化亞銅薄膜的制備及其光催化性能的研究[D]. 安徽建筑大學(xué), 2014.

[26] 張楨. 氧化亞銅薄膜的電化學(xué)制備及其光催化和光電性能的研究[D]. 上海交通大學(xué)材料科 學(xué)與工程學(xué)院, 2013.

[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.

[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.

[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.

[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.

[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.

[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.

[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.

[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.

[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.

[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.

[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.

 [38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.

[39] KAZIMIERCZUK T, FR?HLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.

[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.

[41] 舒云. Cu2O薄膜的電化學(xué)制備及其光電化學(xué)性能的研究[D]. 云南大學(xué)物理與天文學(xué)院砖顷,2019.

閱讀延伸

展示全部  up

国产福利姬视频在线观看,国产原创激情在线观看网站,亚洲欧美日韩激色国产精品,日韩精品亚洲国产