首頁(yè)  技術(shù)文章  橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(二十六)- 沉積體系建模擬合

橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(二十六)- 沉積體系建模擬合

發(fā)布時(shí)間:2024-05-22 16:31:36 瀏覽量:1441 作者:Alex

摘要

我們對(duì)沉積不同時(shí)間得到的橢偏測(cè)試數(shù)據(jù)進(jìn)行擬合亿遂,得到沉積薄膜的光學(xué)常數(shù)n、k渺杉,介電常數(shù)的實(shí)部和虛部以及沉積薄膜的厚度d崩掘。

正文


橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(二十六)- 沉積體系建模擬合


1、多層膜模型


通過(guò)之前的建模與擬合的詳細(xì)描述少办,這里建立三層層狀模型苞慢,如圖4-9所示,其中圖4-9(a)為沉積的系統(tǒng)的橫截面示意圖英妓,圖4-9(b)等效的光學(xué)模型圖挽放,第1層為沉積之前裝置測(cè)試擬合結(jié)果等效層(Equivalent layer),第二層為沉積薄膜層(CU2Ofilm)蔓纠,第三層為Au/Si基底層(Au/Si substrate)辑畦。


圖4-9沉積系統(tǒng)截面(a)及其擬合模型(b)示意圖


2、擬合步驟


首先把沉積之前裝置測(cè)試得到的數(shù)據(jù)先用逐點(diǎn)擬合模型進(jìn)行擬合得到光學(xué)常數(shù)n腿倚、k及厚度d纯出,然后建立三層模型并分段擬合。300nm-500nm用Lorentz Oscillator+Drude模型擬合,得到n暂筝、k箩言、d、焕襟、陨收;然后在此基礎(chǔ)上500nm-800nm波段用逐點(diǎn)擬合得到該段的n、k鸵赖、务漩、


3它褪、沉積薄膜層的光學(xué)常數(shù)


通過(guò)層狀模型分段擬合饵骨,得到不同沉積時(shí)間的在300nm–800nm波段的各個(gè)擬合參數(shù)如表4-2所示。其中RMSE代表擬合的均方根誤差茫打,可以看到不同時(shí)間擬合得到的RMSE都比較小居触,在0.36-0.50之間,說(shuō)明該擬合結(jié)果較為可靠包吝。表4-2中d(CU2O,nm)代表擬合得到的沉積層的厚度,d(ITO-Sol.nm)代表等效層的擬合厚度源葫;诗越、Γ對(duì)應(yīng)Drude中的等離子體頻率及阻尼頻率;A息堂、Ect嚷狞、Γ(1、2荣堰、3床未、4)分別對(duì)應(yīng)LorentzOscillator的振幅、中心能量和展寬能量振坚。



4薇搁、光學(xué)常數(shù)的演變


圖4-10是經(jīng)過(guò)擬合得到的n和k,從圖中可以看到不同沉積時(shí)間下得到的曲線隨波長(zhǎng)的變化大致趨勢(shì)一致渡八,但在細(xì)節(jié)方面及數(shù)值上會(huì)有變化啃洋。


從圖4-10(a)折射率n值來(lái)看,沒(méi)有沉積之前即0s時(shí)屎鳍,n值從300nm-800nm不斷減小宏娄,在300nm-500nm波段平緩,500nm處驟減逮壁,600nm-800nm達(dá)到zui小值且有波動(dòng)孵坚。與0s相比,不同沉積時(shí)間在300nm-500nm波段每個(gè)沉積時(shí)間的變化趨勢(shì)一致,數(shù)值上180szui大卖宠,360szui小巍杈,其余介于二者之間;都在330nm和410nm附近存在波包逗堵。在500nm-800nm波段秉氧,變化趨勢(shì)比較相似,數(shù)值上比0s的大蜒秤,但是存在波動(dòng)汁咏,特別是180s在600nm附近存在驟減。


從圖4-10(b)消光系數(shù)k值來(lái)看作媚,0s時(shí)k值從300nm-800nm不斷增加攘滩,在300nm-500nm波段平緩,500nm處驟增纸泡,600nm-800nm達(dá)到峰值且有波動(dòng)漂问。在500-800nm波段歸結(jié)于Au基底的等離子體共振吸收。和0s相比女揭,不同沉積時(shí)間300nm-500nm波段整體數(shù)值上較小蚤假,且變化趨勢(shì)不一致,在500nm-800nm波段減小且趨于平穩(wěn)吧兔。


綜合n磷仰、k值的表現(xiàn)知在短波段(300nm-500nm)比在長(zhǎng)波段(500nm-800nm)更能反應(yīng)出沉積層的CU2O的信息,故而后面的研究分析著重在該波段境蔼。


圖4-10擬合得到的不同沉積時(shí)間薄膜的光學(xué)常數(shù)(a)灶平、n;(b)箍土、k



了解更多橢偏儀詳情逢享,請(qǐng)?jiān)L問(wèn)上海昊量光電的官方網(wǎng)頁(yè):

http://www.wjjzl.com/three-level-56.html


更多詳情請(qǐng)聯(lián)系昊量光電/歡迎直接聯(lián)系昊量光電

關(guān)于昊量光電:

上海昊量光電設(shè)備有限公司是光電產(chǎn)品專業(yè)代理商,產(chǎn)品包括各類激光器吴藻、光電調(diào)制器瞒爬、光學(xué)測(cè)量設(shè)備、光學(xué)元件等沟堡,涉及應(yīng)用涵蓋了材料加工疮鲫、光通訊、生物醫(yī)療弦叶、科學(xué)研究俊犯、國(guó)防、量子光學(xué)伤哺、生物顯微燕侠、物聯(lián)傳感者祖、激光制造等幻林;可為客戶提供完整的設(shè)備安裝臀蛛,培訓(xùn)世囊,硬件開發(fā)岭佳,軟件開發(fā),系統(tǒng)集成等服務(wù)铭污。

您可以通過(guò)我們昊量光電的官方網(wǎng)站www.wjjzl.com了解更多的產(chǎn)品信息七婴,或直接來(lái)電咨詢4006-888-532官还。


參考文獻(xiàn)

[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.

[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.

[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.

[4] CHEN S, KüHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.

[5] 陳籃饶氏,周巖. 膜厚度測(cè)量的橢偏儀法原理分析[J]. 大學(xué)物理實(shí)驗(yàn), 1999, 12(3): 10-13.

[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.

[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.

[10] 焦楊.橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建.云南大學(xué)說(shuō)是論文,2022.

[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.

[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.

[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.

[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.

[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.

[16] VIEGAS D, FERNANDES E, QUEIRóS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.

[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.

[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.

[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.

[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.

[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..

[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).

[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.

[24] 李廣立. 氧化亞銅薄膜的制備及其光電性能研究[D]. 西南交通大學(xué), 2016.

[25] 董金礦. 氧化亞銅薄膜的制備及其光催化性能的研究[D]. 安徽建筑大學(xué), 2014.

[26] 張楨. 氧化亞銅薄膜的電化學(xué)制備及其光催化和光電性能的研究[D]. 上海交通大學(xué)材料科 學(xué)與工程學(xué)院, 2013.

[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.

[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.

[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.

[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.

[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.

[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.

[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.

[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.

[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.

[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.

[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.

 [38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.

[39] KAZIMIERCZUK T, FR?HLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.

[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.

[41] 舒云. Cu2O薄膜的電化學(xué)制備及其光電化學(xué)性能的研究[D]. 云南大學(xué)物理與天文學(xué)院讥耗,2019.

閱讀延伸

展示全部  up

国产福利姬视频在线观看,国产原创激情在线观看网站,亚洲欧美日韩激色国产精品,日韩精品亚洲国产